Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Foodborne Pathog Dis ; 20(1): 7-16, 2023 01.
Article in English | MEDLINE | ID: mdl-36577050

ABSTRACT

Antimicrobial-resistant bacteria isolated from food animals pose a major health threat to the public on this planet. This study aimed to determine the susceptibility profiles of Escherichia coli isolated from cattle and pig fecal samples and investigate the molecular characteristics of extended-spectrum ß-lactamase (ESBL)-producing E. coli using gene identification, conjugation, and Southern blot approach. Overall 293 E. coli were recovered from cattle (120 isolates) and pigs (173 isolates) in 7 provinces of Korea during 2017-2018. Ampicillin, chloramphenicol, streptomycin, and sulfisoxazole resistance rates were the highest in pigs' isolates (>60%, p ≤ 0.001) compared to that in cattle (3-39%). Multidrug resistance (MDR) was higher in pig isolates (73%) than in cattle (31%), and the MDR profile usually includes streptomycin, sulfisoxazole, and tetracycline. Resistance to critically important antimicrobials such as ceftiofur, colistin, and ciprofloxacin was higher in weaners than those from finishers in pigs. The qnrS gene was detected in 13% of the pig isolates. Eight isolates from pigs and one isolate from cattle were identified as ESBL-producers and ESBL genes belonged to blaCTX-M-55 (n = 4), blaCTX-M-14 (n = 3), and blaCTX-M-65 (n = 2). Notably, the blaCTX-M-65 and qnrS1 genes were found to be carried together in an identical plasmid (IncHI2) in two isolates from finisher pigs. The blaCTX-M-carrying isolates belonged to phylogenetic groups B1 (n = 4), B2 (n = 2), A (n = 2), and D (n = 1). The blaCTX-M genes and non-ß-lactam resistance traits were transferred to the E. coli J53 recipient from seven blaCTX-M-positive strains isolated from pigs. The blaCTX-M genes belonged to the IncI1α, IncFII, and IncHI2 plasmids and are also associated with the ISEcp1, IS26, IS903, and orf477 elements. These findings suggested the possibility of blaCTX-M-carrying E. coli transmission to humans through direct contact with cattle and pigs or contamination of food products.


Subject(s)
Anti-Infective Agents , Escherichia coli Infections , Animals , Cattle , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , beta-Lactamases/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Phylogeny , Plasmids/genetics , Republic of Korea/epidemiology , Streptomycin/pharmacology , Sulfisoxazole/pharmacology , Swine
2.
Front Pharmacol ; 13: 989395, 2022.
Article in English | MEDLINE | ID: mdl-36188537

ABSTRACT

Escherichia coli (E. coli) infections are becoming increasingly difficult to treat, as antibiotic-resistant variants proliferate. Studies on novel methods to combat the spread of resistance and improve the performance of current antibiotics are vital. We aimed to boost the efficacy of the antibiotic orbifloxacin (ORB) against E. coli by combining it with a phenolic component, propyl gallate (PG). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ORB against the E. coli KVCC 1423 resistant strain were 128 µg/ml and 256 µg/ml, respectively. However, the MIC of ORB for the remaining E. coli strains was 0.5 µg/ml-2 µg/ml. For the combination of PG and ORB, the lowest fractional inhibitory concentration (FIC) index was less than 0.5, and the combination decreased the MIC of both drugs by 74%. The time-kill assay revealed the killing properties of both the drugs and the pharmacodynamic model (PD model) confirmed the strong killing properties of the combination as compared to the individual activities of the drugs. The ratio between MIC and mutant prevention concentration of ORB against E. coli 1400306 and 1,423 were 1:32 and 1:8, respectively. The combination of ORB and PG showed strong biofilm eradication and inhibited the motility of bacteria. The cell viability of the combination was > 80%. Therefore, we believe that ORB and PG in combination could be a possible antibacterial candidate that could minimize resistance and improve antibiotic potential.

3.
Biomed Pharmacother ; 154: 113629, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058150

ABSTRACT

Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine due to its strong phytochemical profile and pharmacological efficacy. In this study, we evaluated the anti-obesity potential of Pyrus ussuriensis Maxim extracts (PUE) and investigated the underlying mechanisms using a combination of in vitro, in vivo, and microbiota regulation approaches. In an adipogenesis assay, the fermented (F)PUE and non-fermented (NF)PUE significantly reduced the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 85.33 and 96.67 µg/mL, respectively. In a high-fat diet (HFD)-induced obese rat model (n = 8 animals/group), oral administration of FPUE additionally reduced the total body weight gain significantly. No difference in food intake was observed, however, between the control-chow diet, FPUE, and NFPUE-treated HFD rats. Adipose tissue mass and systemic insulin resistance were markedly reduced in FPUE-treated HFD rats, in a dose-dependent manner. Treatment with FPUE also greatly improved obesity-related biomarkers, including total cholesterol, leptin, active ghrelin, Total GIP, adiponectin, and proinflammatory cytokines. Moreover, FPUE significantly suppressed HFD-induced adipogenic genes expression, while increasing fatty acid oxidation-related genes expression. Additionally, FPUE treatment attenuated the HFD-induced Firmicutes proportion within the intestinal microbiota by regulating key metabolic pathways, thus enhancing microbial population diversity (e.g., increasing Bacteroides, Bifidobacterium, Prevotella, Eubacterium, and Clostridium). Together, these results reveal a strong anti-obesity potential of FPUE through adipogenesis, lipid metabolism, weight reduction, and microbiota regulation, raising the possibility of developing FPUE as a novel therapeutic agent to control obesity and obesity-associated metabolic disorders.


Subject(s)
Anti-Obesity Agents , Microbiota , Pyrus , 3T3-L1 Cells , Adipogenesis , Animals , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats
4.
Microorganisms ; 10(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014085

ABSTRACT

The emergence of bacterial infections in companion animals is a growing concern as humans can also be infected through the transmission of pathogenic bacteria. Because there have been few studies conducted on companion animals, the extent and significance of prevalence in veterinary practices remain unknown. This is the first nationwide surveillance report aimed at elucidating the prevalence pattern and associated infections of isolated bacteria from dogs in Korea. Bacterial isolates were collected from seven different laboratories participating in the Korean Veterinary Antimicrobial Resistance Monitoring System from 2018 to 2019. The samples were obtained from the diarrheal stool, skin/ear, urine, and respiratory samples of veterinary hospital-visited dogs. Isolation and identification of bacterial species was carried out using a bacterial culture approach and then confirmed with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) and polymerase chain reaction (PCR). Out of 3135 isolates in dogs, 1085, 1761, 171, and 118 were extracted from diarrheal stool, skin/ear, urine, and respiratory samples, respectively. The overall prevalence of bacteria was higher among two age groups (1-5 and 6-10 years) with a 66.5 percent prevalence. This study showed that Escherichia coli was the most prevalent species among isolated bacterial species of diarrheal and urine origin, whereas Staphylococcus pseudintermedius was the most prevalent among skin and respiratory sample isolates. The data on the prevalence of bacteria for each dog specimen could provide basic information to estimate the extent of bacterial infection and antimicrobial resistance development and to guide veterinarians in therapeutic decisions in clinical practices throughout Korea.

5.
Microorganisms ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35336100

ABSTRACT

Antimicrobial-resistant bacteria in food animals pose a major public health threat worldwide. In this study, we aimed to assess the antimicrobial resistance profiles and resistance trends of commensal Escherichia coli isolated from the feces of healthy cattle, pigs, and chickens in South Korea during 2010 and 2020. A total of 7237 E. coli isolates (2733 cattle, 2542 pig, and 1962 chicken isolates) were tested for susceptibility towards 12 antimicrobials. About 48%, 90%, and 97% of cattle, pig, and chicken isolates, respectively, were resistant to one or more antimicrobial agents. Cattle isolates presented low resistance (<15%) to most of the tested antimicrobials. In contrast, chicken and pig isolates demonstrated a relatively high (>45%) resistance rate to ampicillin, chloramphenicol, streptomycin, and tetracycline. We observed high ciprofloxacin and nalidixic acid resistance rates in chicken (76.1% and 88.6%, respectively), isolates in pig (12.7% and 26.7%, respectively) and cattle (2.7% and 8.2%, respectively) isolates. Notably, a very small proportion of isolates (<5%) from cattle, chickens, and pigs demonstrated resistance to amoxicillin/clavulanic acid, cefoxitin, and colistin. We identified ceftiofur resistance in a small proportion of chicken (8.8%), pig (3.7%), and cattle (0.7%) isolates. We noted an increasing but fluctuating trend of ampicillin, amoxicillin/clavulanic acid, ceftiofur, cefoxitin, chloramphenicol, ciprofloxacin, and streptomycin resistance in pig isolates. Similarly, the ampicillin, ceftiofur, and chloramphenicol resistance rates were increased but fluctuated through time in chicken isolates. Overall, 56% of the isolates showed multidrug-resistant (MDR). The proportion of MDR isolates was low in cattle (17.1%); however, this proportion was high in chickens (87.1%) and pigs (73.7%). Most of the resistance patterns included streptomycin and tetracycline in pigs and cattle, and ciprofloxacin and nalidixic acid in chickens. In conclusion, this study showed high resistance of commensal E. coli isolated from major food animals in Korea to commonly used antimicrobials including critically important antimicrobials. These bacteria could not only be a resistance reservoir but also could have potential to spread this resistance through gene transfer to pathogenic bacteria. Thus, the high prevalence of antimicrobial resistance in food animals highlights the urgent need for measures to restrict and ensure the prudent use of antimicrobials in Korea.

6.
Pathogens ; 11(3)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35335648

ABSTRACT

Bacterial infections are a significant cause of illness and death in different animals. However, these bacterial infections could be a source of human disease or illness if these pathogenic bacteria are present in companion animals. This study aimed to investigate the prevalence of pathogenic bacteria associated with different site infections in cats in the Republic of Korea. For this purpose, samples were collected from the skin/ear, urine, respiratory, and diarrheal stool origins of cats obtained between 2018 and 2019 from seven different laboratories and centers participating in the Korean Veterinary Antimicrobial Resistance Monitoring System. These samples were subjected to analysis for the identification and isolation of associated bacterial species using a bacterial culture approach. A total of 609 isolates were identified in four different cat samples. Among them, 267, 184, 57, and 101 were extracted from diarrheal stool, skin, urine, and respiratory samples, respectively. The findings of this study showed that Escherichia coli was the most prevalent species among isolated bacterial species of diarrheal stool and urine origin. Staphylococcus felis and Pasteurella multocida were most prevalent in the skin and respiratory tract, respectively. However, there was no significant difference in bacterial distribution among the different age groups in all samples. This is the first nationwide surveillance report that associates bacterial prevalence with their site of origin and helps in the prevention of bacterial infections in cats. Moreover, the pattern of bacterial prevalence could provide sufficient guidance for the selection of empirical antimicrobial therapy against infections in cats.

7.
Antioxidants (Basel) ; 11(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35204193

ABSTRACT

Obesity is becoming a global epidemic as a result of high-calorie food intake and unhealthy lifestyles. Different marine plants, especially brown algae (Ecklonia cava), are traditionally used to treat different health-related issues. The study was carried out to investigate the anti-obesity properties of E. cava 70% ethanol extract. To evaluate the anti-obesity effect of E. cava, both in vitro and in vivo tests were performed. E. cava suppresses pre-adipocyte 3T3-L1 differentiation in a dose-dependent manner. In HFD-induced obese rats' models, administration of E. cava 125, 250, and 500 mg/kg significantly decreases total body weight and organs, especially liver weight, in all treatment groups. Adipose tissue weight, including subcutaneous, epididymal, peritoneal, and mesenteric adipose tissue, was markedly reduced in E. cava-treated HFD rats in dose-dependent manners. In addition, liver-related biomarkers AST, ALP, ALT, and GGT were evaluated; the lower level of liver-related biomarkers indicates no liver injury or fatty liver issue in E. cava HFD treatment groups. In addition, E. cava treatment has significant effects on the expression of adipogenic and lipogenic (PPAR-γ, FAS, LPL, and SREBP-1c) genes. Altogether, these results show the anti-obesity effect of E. cava. We concluded that E. cava could be a potential candidate for the prevention of obesity-induced by a high-fat diet.

8.
Foods ; 10(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34681429

ABSTRACT

Chronic alcohol consumption can cause hepatic injury and alcohol-induced toxicities. Extracts from Smilax china root have been widely used in traditional medicine and for their potential pharmacological benefits. We aimed to determine if fermented Smilax china extract (FSC) regulates alcoholic fatty liver and liver injury using two in vivo experiments. Sprague-Dawley rats were administered ethanol (3 g/kg b.w.; po) with or without FSC pretreatment to induce an acute hangover. In another experiment, rats were fed either a normal or Lieber-DeCarli ethanol (6.7%) diet with or without FSC pretreatment (125, 250, and 500 mg/kg b.w.; po) for 28 days. Serum biomarkers, liver histopathology, and the mRNA levels of anti-inflammatory, antioxidant, lipogenic, and lipolytic genes were analyzed. FSC pretreatment significantly reduced blood alcohol and acetaldehyde concentrations, upregulated the mRNA expression of alcohol dehydrogenase, aldehyde dehydrogenase, and superoxide dismutase, and decreased the activities of liver enzymes in a dose-dependent manner. It also downregulated SERBP-1c and upregulated PPAR-α and reduced the gene expression of the anti-inflammatory cytokine IL-6 in the liver. The final extract after fermentation had increased GABA content. Furthermore, FSC was found to be safe with no acute oral toxicity in female rats. Thus, FSC increases alcohol metabolism and exhibits antioxidant and anti-inflammatory effects to induce hepatoprotection against alcohol-induced damage. It may be used as a functional food ingredient after excess alcohol consumption.

9.
Antioxidants (Basel) ; 10(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439524

ABSTRACT

The present study aimed to assess the immunomodulatory effects of fermented Aronia melanocarpa extract (FAME) on RAW 264.7 cells and BALB/c mice. Aronia melanocarpa fruit was fermented with Lactobacillus plantarum EJ2014 by adding yeast extract and monosodium glutamate for 9 days at 30 °C to produce γ-aminobutyric acid (GABA). After fermentation, significant GABA production was noted, along with minerals, polyphenols, and flavonoids (p < 0.05). The polyphenol content was confirmed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RAW 264.7 cells were stimulated with lipopolysaccharide (LPS, 1 µg/mL) in the presence or absence of FAME, and proinflammatory cytokine contents were measured by qPCR. In the in vivo experiment, female BALB/c mice were administered 125, 250, and 500 mg/kg of FAME for 21 days. FAME treatment increased neutrophil migration and phagocytosis (p < 0.05). It also increased splenocyte proliferation, CD4+ and CD8+ T-cell expression, and lymphocyte proliferation. Furthermore, it increased IFN-γ, IL-2, and IL-4 cytokine levels in a dose-dependent manner (p < 0.05). However, it decreased TNF-α and IL-6 levels (p < 0.05). These results indicate that FAME fortified with GABA including bioactive compounds exerts anti-inflammatory effects by inhibiting proinflammatory cytokines in RAW 264.7 cells and modulates immune response in mice. Thus, FAME could be a potential therapeutic agent for inflammatory disorders.

10.
Antioxidants (Basel) ; 10(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809380

ABSTRACT

Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine for asthma, cough, and atopic dermatitis in Korea and China. Although it was originally shown to possess anti-inflammatory, antioxidant, and antiatopic properties, its gastroprotective effects have not been investigated. In the present study, we evaluated the protective effects of Pyrus ussuriensis Maxim extract (PUE) against ethanol-induced gastritis in rats. The bioactive compound profile of PUE was determined by gas chromatography mass spectroscopy (GC-MS) and high-performance liquid chromatography (HPLC). The gastroprotection of PUE at different doses (250 and 500 mg/kg body weight) prior to ethanol ingestion was evaluated using an in vivo gastritis rat model. Several endpoints were evaluated, including gastric mucosal lesions, cellular degeneration, intracellular damage, and immunohistochemical localization of leucocyte common antigen. The gastric mucosal injury and ulcer score were determined by evaluating the inflamed gastric mucosa and by histological examination. To identify the mechanisms of gastroprotection by PUE, antisecretory action and plasma prostaglandin E2 (PGE2), gastric mucosal cyclic adenosine monophosphate (cAMP), and histamine levels were measured. PUE exhibited significant antioxidant effects with IC50 values of 56.18 and 22.49 µg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'- azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) inhibition (%), respectively. In addition, GC/MS and HPLC analyses revealed several bioactive compounds of PUE. Pretreatment with PUE significantly (p < 0.05) decreased the ulcer index by preventing gastric mucosal lesions, erosion, and cellular degeneration. An immunohistochemical analysis revealed that PUE markedly attenuated leucocyte infiltration in a dose-dependent manner. The enhancement of PGE2 levels and attenuation of cAMP levels along with the inhibition of histamine release following PUE pretreatment was associated with the cytoprotective and healing effects of PUE. In contrast, the downregulation of the H+/K+ ATPase pathway as well as muscarinic receptor (M3R) and histamine receptor (H2R) inhibition was also involved in the gastroprotective effects of PUE; however, the expression of cholecystokinin-2 receptors (CCK2R) was unchanged. Finally, no signs of toxicity were observed following PUE treatment. Based on our results, we conclude that PUE represents an effective therapeutic option to reduce the risk of gastritis and warrants further study.

11.
Nutrients ; 12(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138027

ABSTRACT

Atopic dermatitis (AD) is an allergic and chronic inflammatory skin disease. The present study investigates the anti-allergic, antioxidant, and anti-inflammatory activities of the ethanolic extract of Cornus officinalis (COFE) for possible applications in the treatment of AD. COFE inhibits the release of ß-hexosaminidase from RBL-2H3 cells sensitized with the dinitrophenyl-immunoglobulin E (IgE-DNP) antibody after stimulation with dinitrophenyl-human serum albumin (DNP-HSA) in a concentration-dependent manner (IC50 = 0.178 mg/mL). Antioxidant activity determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power assay, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activity, result in EC50 values of 1.82, 10.76, and 0.6 mg/mL, respectively. Moreover, the extract significantly inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production and the mRNA expression of iNOS and pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) through attenuation of NF-κB activation in RAW 264.7 cells. COFE significantly inhibits TNF-α-induced apoptosis in HaCaT cells without cytotoxic effects (p < 0.05). Furthermore, 2-furancarboxaldehyde and loganin are identified by gas chromatography/mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, respectively, as the major compounds. Molecular docking analysis shows that loganin, cornuside, and naringenin 7-O-ß-D-glucoside could potentially disrupt the binding of IgE to human high-affinity IgE receptors (FceRI). Our results suggest that COFE might possess potential inhibitory effects on allergic responses, oxidative stress, and inflammatory responses.


Subject(s)
Anti-Allergic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cornus , Ethanol/pharmacology , Plant Extracts/pharmacology , Animals , Chromatography, Liquid , Cytokines/metabolism , Humans , Lipopolysaccharides/metabolism , Mice , Molecular Docking Simulation , Nitric Oxide/biosynthesis , Oxidative Stress/drug effects , RAW 264.7 Cells , Tandem Mass Spectrometry
12.
Vet Res ; 51(1): 131, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33059768

ABSTRACT

Cefquinome is administered in horses for the treatment of respiratory infection caused by Streptococcus equi subsp. zooepidemicus, and septicemia caused by Escherichia coli. However, there have been no attempts to use cefquinome against Streptococcus equi subsp. equi (S. equi), the causative agent of strangles. Hence the objective of this study was to calculate an optimal dosage of cefquinome against S. equi based on pharmacokinetics and pharmacodynamics integration. Cefquinome (1.0 mg/kg) was administered by intravenous and intramuscular routes to six healthy thoroughbred foals. Serum cefquinome concentrations were determined by high-performance liquid chromatography. The in vitro and ex vivo antibacterial activity were determined from minimum inhibitory concentrations (MIC) and bacterial killing curves. The optimal dosage was calculated from the integration of pharmacokinetic parameters and area under the curve (AUC24h/MIC) values. Total body clearance and volume of distribution of cefquinome after intravenous administration were 0.06 L/h/kg and 0.09 L/kg, respectively. Following intramuscular administration, a maximum concentration of 0.73 µg/mL at 1.52 h (Tmax) and a systemic bioavailability of 37.45% were observed. The MIC of cefquinome against S. equi was 0.016 µg/mL. The ex vivo AUC24h/MIC values representing bacteriostatic, and bactericidal activity were 113.11, and 143.14 h, respectively. Whereas the %T > MIC for bactericidal activity was 153.34%. In conclusion, based on AUC24h/MIC values and pharmacokinetic parameters, cefquinome when administered by intramuscularly at a dosage of 0.53 mg/kg every 24 h, would be effective against infection caused by S. equi in foals. Further studies may be necessary to confirm its therapeutic efficacy in a clinical environment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Horse Diseases/drug therapy , Streptococcal Infections/veterinary , Streptococcus/drug effects , Animals , Anti-Bacterial Agents/pharmacokinetics , Cephalosporins/pharmacokinetics , Horses , Injections, Intramuscular/veterinary , Microbial Sensitivity Tests/veterinary , Streptococcal Infections/drug therapy
13.
Int J Genomics ; 2020: 4850290, 2020.
Article in English | MEDLINE | ID: mdl-32318593

ABSTRACT

We employed an integrative strategy to present subtractive and comparative metabolic and genomic-based findings of therapeutic targets against Streptococcus parauberis. For the first time, we not only identified potential targets based on genomic and proteomic database analyses but also recommend a new antimicrobial drug for the treatment of olive flounder (Paralichthys olivaceus) infected with S. parauberis. To do that, 102 total annotated metabolic pathways of this bacterial strain were extracted from computational comparative metabolic and genomic databases. Six druggable proteins were identified from these metabolic pathways from the DrugBank database with their respective genes as mtnN, penA, pbp2, murB, murA, coaA, and fni out of 112 essential nonhomologous proteins. Among these hits, 26 transmembrane proteins and 77 cytoplasmic proteins were extracted as potential vaccines and drug targets, respectively. From the FDA DrugBank, ceftiofur was selected to prevent antibiotic resistance as it inhibited our selected identified target. Florfenicol is used for treatment of S. parauberis infection in flounder and was chosen as a comparator drug. All tested strains of fish isolates with S. parauberis were susceptible to ceftiofur and florfenicol with minimum inhibitory concentrations (MIC) of 0.0039-1 µg/mL and 0.5-8 µg/mL, IC50 of 0.001-0.5 µg/mL and 0.7-2.7 µg/mL, and minimum biofilm eradication concentrations (MBEC) of 2-256 µg/mL and 4-64 µg/mL, respectively. Similar susceptibility profiles for ceftiofur and florfenicol were found, with ceftiofur observed as an effective and potent antimicrobial drug against both planktonic and biofilm-forming strains of the fish pathogen Streptococcus parauberis, and it can be applied in the aquaculture industry. Thus, our predictive approach not only showed novel therapeutic agents but also indicated that marketed drugs should also be tested for efficacy against newly identified targets of this important fish pathogen.

14.
BMC Complement Med Ther ; 20(1): 75, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143613

ABSTRACT

BACKGROUND: Various extracts of Hovenia dulcis have been commonly used in Asia for cases of alcohol-related disorders. Fermentation is reported to enhance the level and biological activities of various bio-constituents of plant extracts. Therefore, this study was undertaken to evaluate the effects of fermented H. dulcis extract (FHDE) on ethanol-induced liver injury in mice. METHODS: FHDE was prepared using Bacillus subtilis and Lactobacillus plantarum. The effects of FHDE on ethanol-induced liver injury were evaluated in C57BL/6 N CrSlc mice. A mixed feed preparation containing the fermented extract with and without ethanol was given to mice for 29 days, according to its group. At the end of the experiment, blood and liver samples were collected from all mice in the group. Plasma biochemical analysis and histopathological investigation were performed to evaluate the impacts of treatment on the biomarkers of hepatic damage and inflammatory changes. Besides, the expression of genes that regulate the activities of enzymes associated with alcohol metabolism, antioxidant activity, and fatty acid oxidation was assessed using a quantitative real-time polymerase chain reaction. Moreover, the amino acid contents and the active ingredients of the extract were evaluated before and after fermentation. RESULTS: Fermentation resulted in a marked increase and decrease in the amount of Gamma-Amino-n-butyric acid (GABA) and glutamic acid, respectively. FHDE enhanced the body weight gain of mice compared to ethanol. Besides, plasma levels of triglyceride, low-density lipoprotein, the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were significantly (P < 0.05) reduced in the FHDE-treated groups relative to the ethanol-treated control. FHDE upregulated the expression of genes associated with enzymes involved in alcohol dehydrogenation (Adh1 and Aldh2), antioxidant activity (SOD and CAT), and fatty acid oxidation (PPAR-α and PGC-1α). However, the expressions of Cytochrome peroxidase Cyp2E1 and genes related to lipogenesis (SREBP-1c, FAS, SCD-1, and ACC) were significantly (P < 0.05) downregulated following treatment with the FHDE. Histopathological investigation demonstrated a slight degree of inflammatory cell infiltration and occasional fatty changes in the FHDE-treated groups. CONCLUSION: The GABA-enriched fermented H. dulcis extract prevented ethanol-induced hepatic damage by enhancing the antioxidant defense system, fatty acid oxidation, and reducing lipogenesis.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Plant Extracts/pharmacology , Rhamnaceae/chemistry , gamma-Aminobutyric Acid/pharmacology , Animals , Chromatography , Disease Models, Animal , Ethanol/adverse effects , Fermentation , Lipogenesis/drug effects , Mass Spectrometry , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Plant Extracts/chemistry , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...